by April McCarthy May 12, 2014 from PreventDisease Website
The study replicated a 2012 finding from the same research group that found a link between low doses of imidacloprid and Colony Collapse Disorder (CCD), in which bees abandon their hives over the winter and eventually die.
The
new study also found that low doses of a second neonicotinoid,
clothianidin, had the same negative effect.
The chemical is widely used for indoor and turf pest control in the U.S., and is a generation of insecticide that is highly toxic. Fipronil has been shown to reduce behavioral function and learning performances in honeybees.
Further, although other studies have suggested that CCD-related mortality in honey bee colonies may come from bees' reduced resistance to mites or parasites as a result of exposure to pesticides, the new study found that bees in the hives exhibiting CCD had almost identical levels of pathogen infestation as a group of control hives, most of which survived the winter.
This finding suggests that the neonicotinoids are causing some other kind of biological mechanism in bees that in turn leads to CCD.
The study (Sub-lethal Exposure to Neonicotinoids Impaired Honey Bees Winterization before Proceeding to Colony Collapse Disorder) appears online May 9, 2014 in the Bulletin of Insectology.
Since 2006, there have been significant losses of honey bees from CCD.
Pinpointing the cause is crucial to mitigating this problem since bees are prime pollinators of roughly one-third of all crops worldwide. Experts have considered a number of possible causes, including pathogen infestation, beekeeping practices, and pesticide exposure.
Recent findings, including a 2012 study by Chensheng Lu and colleagues, suggest that CCD is related specifically to neonicotinoids, which may impair bees' neurological functions.
Imidacloprid and clothianidin both belong to this group.
Lu and his co-authors from the Worcester County Beekeepers Association studied the health of 18 bee colonies in three locations in central Massachusetts from October 2012 through April 2013.
At each location, the researchers separated six colonies into three groups - one treated with imidacloprid, one with clothianidin, and one untreated.
There was a steady decline in the size of all the bee colonies through the beginning of winter - typical among hives during the colder months in New England.
Beginning in January 2013, bee populations in the control colonies began to increase as expected, but populations in the neonicotinoid-treated hives continued to decline.
By April 2013, 6 out of 12 of the neonicotinoid-treated colonies were lost, with abandoned hives that are typical of CCD.
Only one of the control colonies was lost - thousands of dead bees were found inside the hive - with what appeared to be symptoms of a common intestinal parasite called Nosema ceranae.
While the 12 pesticide-treated hives in the current study experienced a 50% CCD mortality rate, the authors noted that, in their 2012 study, bees in pesticide-treated hives had a much higher CCD mortality rate - 94%.
That earlier bee die-off occurred during the particularly cold and prolonged winter of 2010-2011 in central Massachusetts, leading the authors to speculate that colder temperatures, in combination with neonicotinoids, may play a role in the severity of CCD.
|